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We deduced the equation of motion for free vibrations using Mohr-Maxwell method, considering that the bar
is requested to bending by the inertial forces and by the damping forces. We experimentally obtained the
dynamic response for sandwich bars with polypropylene honeycomb core, which have the exterior layers
made of epoxy resin reinforced with steel fabric. In addition, we determined the damping coefficients per
unit mass and per unit length of the bar, for bar with core thicknesses equal to 10, 15 , 20 mm; width of 40
and 60 mm, and the free length of embedded bar equal to 200, 250, 300 and 350 mm. For each type of bar
studied, we determined the relationships of exponential type for the calculus damping coefficients (mentioned
above), according to the free length of the embedded bar.
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The composite plates and bars could be analyzed using
a lot of theories that mostly differ by the inclusions or
neglecting the effects of angular deformation and
respectively, the rotational inertia.

A theory (First – order Shear Deformation Theory – FSDT)
has been developed in [1] and later modified in [2]. This
theory relies on a linear distribution of the shear stresses
and it requests a correction factor similar with the one
from isotropic plates. This theory states that a straight line
normal on the median plane before deformation, remains
straight without keeping the perpendicularity during
deformation (on the median surface).

Exact theories rely on a non-linear distribution of shear
stresses along the thickness of the plate or bar. The
inclusion of high order terms implies the inclusion of
supplementary unknowns. Moreover, when fulfilling both
the distribution of shear stresses in thickness is parabolic
and if the limit conditions are accomplished on external
surfaces, it is not necessary a correction factor. Based on
this fact, it was developed a theory [3] (High – order Shear
Deformation Theory – HSDT) where it is assumed that
stresses and strains normal to the median plane are null.
Another theory, in which there are also considered the
stresses normal to the median plane, has also been
developed in [4, 5] by removing a series of contradictions
appearing in previous theories by accepting non linear
factors of shear stresses in thickness; also, they did not
neglect a part of the normal stresses obtained by the loading
of the composite structure.

A much better description can be obtained by using of
Layer - Wise Models (LWM). The first attempts to consider
each layer in a sandwich structures as a separate bar were
made in [6, 7]. In [8], it is expanded the idea for laminated
plates by considering each layer an individual Reissner –
Mindlin plate. The papers [9] and [10] treated each layer
separately using in – plane displacements linear in the
thickness direction z. In [11], it is treated each layer
separately, by employing a higher – order displacement
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field for flexural wave propagation analysis in laminated
plates.

In [12], a Reissner’s mixed variational equation is
employed to derive the differential equations, in terms of
the introduced stress and displacement variables, that give
the dynamic equilibrium and compatibility of each layer. A
numerical investigation has been conducted for free –
vibration response of cross – ply laminated, simply
supported, thick and thin plates for which closed – form
solutions are given.

There have also been made some studies on the damped
vibrations of Euler – Bernoulli and Timoshenko bar. Relevant
to this works are the studies [13, 14]. The material was
assumed to be incompressible whereby the same
viscoelastic operators could be both used for the flexural
and shear deformations. This permitted the use of the
normal modes and their orthogonality conditions to solve
this viscoelastic forced vibration problem. In [13], it is
analyzed a damped and axially loaded Timoshenko bar for
random transverse load. Only a special case of damping in
the transverse and rotatory motion was considered which
allowed, then, using the orthogonality conditions of the
undamped modes to decouple the modal equations. In
[14], it is obtained the „closed – form” solution, but for an
incomplete differential equation of a simply – supported
bar with external damping.

In [15], it is presented a general modal approach to solve
the linear vibration problem of a uniform Timoshenko bar
with external transverse and rotatory viscous damping and
different viscoelastic damping in the flexural and shear
deformations. With this approach, the bars with boundary
conditions can be as conveniently analyzed as a bar with
simple supports.

In [16], the dynamic response of a general class of
continuous linear vibrating systems is analyzed which
passes damping properties close to those resulting in
classical (uncoupled) normal modes. First, conditions are
given for the existence of classical modes of vibrations in
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a continuous linear system, with special attention being
paid to the boundary conditions. Regular perturbation
expansions in terms of undamped mode shapes are utilized
for analyzing the eigenproblem as well as the vibration
response of almost classically damped systems.

The purpose of research done in [17] was to investigate
the curvature, and the face / core debonding influence on
the vibration behaviour of curved composite sandwich
beams built from carbon / epoxy laminate skins over a
foam polyurethane core. The sandwich-type beams, flat
and curved, with debonding, were prepared by keeping
the arc length of the sandwich beams, equal to the length
of flat sandwich beams. Natural frequencies and damping
loss factor, for sandwich beams, were determined using
impulse frequency response technique under free-free
boundary conditions.

Recent applications have shown that honeycomb panels
from polymer, reinforced with fiber, can be used for new
construction or for restoration of existing structures. In [18],
there are studied the vibrations of sandwich structures with
honeycomb which have the core geometry of sinusoidal
type. It was developed a higher order vibration model for
studying the vibrations, made   by energy methods.

In [19], there were studied the free vibrations of the
curved sandwich beams, with flexible core, in different
conditions of temperature. The external surfaces and the
core of the beam were considered as being made of
materials with mechanical properties dependent on
temperature. It was shown that the frequency of free
vibrations of the beams decreases when the temperature
increases.

Theoretical aspects
Equations of motion for transversal vibrations of visco-

elastic bars with constant section and external damping
are given in [15]. It shows that if the ratio of length and
thickness of a bar is greater than ten, then the difference
between Timoshenko and Euler-Bernoulli theories for the
bending moment, shear force and the medium fiber
deformation, are smaller than five percent (5%). It shows
that the damping influence of rotational motion of the bar
section can be neglected (for the first eigenmodes of
vibration). Equations and similar conclusions for bars made
of composite materials are presented in [20-21].

To determine the equation of motion, in case of free
transversal vibrations of a bar embedded at one end and
free at the other, it may be used Mohr-Maxwell method.
Thus, if the bar has constant section, the arrow in  section
x = a is determined by the relationship:

(1)

where
-  L is the bar length;
- 〈EI〉 is the bar stiffness and it is determined with the

relation

  (2)

- E(x, y) is Young’s modulus for bar material;
- m(x) is the bending moment produced by a force equal

to the unit applied in the section x=a

   (3)

- M(x,t)  is the bending moment produced by the exterior
testings of the bar.

We consider that the bar loading is given by:

- the inertial forces        (4)

- the damping forces       ( 5)
where

-        (6)

- ρ(x,y)   is the density of bar material;
-  c* is the damping coefficient per unit length of the bar.
In these conditions, it occurs:

           (7)

The solution for motion equation (1) is determined using
the method of separating variables:

         (8)

The boundary conditions require the following
restrictions for the function  ν(a):

         (9)

Damping determination is made   based on the study of
free vibrations produced by an initial deformation of the bar,
i.e. the initial conditions:

     (10)

The bar vibration has the expression:

       (11)

where           (12)

with:

-        (13)

-  βn are the solutions of equation chβ . cosβ + 1=0;     (14)
-  cn are determined from the orthogonality conditions

      (15)

                               (16)

with:

- is the damping coefficient per unit mass of the

bar;

-        (17)

-  ωn are eigenpulsations of the bar.
Experimental recording of the free vibrations gives the

posibility of damping determination, as follows:
-there are determined the values at which the arrow is

zero (the points where the graph intersects the time axis);
-it is determined the period of cancellation of the

movement, more precisely, T is the time interval double,
between two successive cancellations;

-it is determined the frequency  ν = 1/T  and the pulsation
ω = 2π / T;

-it is determined the damping coefficient
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(18)

where  Ai and Ai+1  are maximums separated by  periods.

Experimental measurements
We built the plates from composite materials with

polypropylene honeycomb core (honeycomb which has
the thickness  with the values ,  and ). The exterior layers of
the plates were made  †of epoxy resin reinforced with steel
fabric.

For these plates, we collected six sets of samples with
length equal with  and width equal with  and respectively .

These were noted as follows:
-the set of samples 1: l = 40 mm; g = 10 mm;
-the set of samples 2: l = 50 mm; g = 10 mm;
-the set of samples 3:l = 40 mm; g = 15 mm ;
-the set of samples 4: l = 50 mm; g = 15 mm;
-the set of samples 5:l = 40 mm; g = 20mm ;
-the set of samples 6:l = 50 mm; g = 20mm .
A sample with the core thickness equal to 20 mm (the

core is made from honeycomb of polypropylene), is
illustrated in figure 1.

We also considered several variants of embedded of
plates, on various lengths, as follows (we will refer to the
free portions of the plates - namely the parts on which the
accelerometers are located, and on which the
measurements will be made; it will be considered
schematization from figure 3):

-Variant I: the free length is 200 mm;
-Variant II: the free length is 250 mm;
-Variant III: the free length is 300 mm;
-Variant IV: the free length is 350 mm.
The measuring points are according to the scheme from

figure 1 (the points where the accelerometer was
positioned) and they will be numbered with P1 and P2. Each
measurement for each point was made twice.

The data record for a bar of set 1, which has the free
length equal to 200 mm and the measurement is made in
point P1, is shown in figure 2.

The processing of  these data record and the calculus of
the damping coefficient, for a five number of cycles is
shown in figure 5. In this processing, based on relation
(18), we determined the half from value of damping
coefficient per unit mass of the bar.

Fig. 1. Fig. 2.

Fig. 3.

Fig. 4.
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Fig. 5.

Fig. 8.

Fig. 6. Fig. 7.

Table 1

Fig. 9.

Because we have not noticed  the significant differences
given by the point of measurement, we have made for
each set of bars, the average of values of the damping
coefficient μ (half of the damping coefficient per unit mass
of the bar) for the eight measurements.

The variation of μ coefficient, depending on the free
length of bar, for bars which have the width equal with 40
and 50 mm is shown in figures 6 and 7.

We have presented the variation for coefficient μ,
because this is directly determined from the processing of
experimental records.
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In table 1 we present the mass properties and the
calculus relationships obtained for coefficient μ, depending
on the free length of embedded bar, for the 6 sets of bars.

The damping coefficient per unit length of the bar (c*)
is determined with the relation (18).

In figures 8 and 9 is illustrated the damping coefficient
variation, per unit length of the bar depending on the free
length of the bar (for bars which have width equal to 40
and 50 mm).

Conclusions
The values analysis of damping coefficients   indicates

that these coefficients must be experimentally determined
for each type of material and sample, being difficult to
deduce a quantitative correspondence with the parameters
which  influence the damping, directly or indirectly. The
values of damping coefficients may depend on several
factors such as: sample dimensions, specific mass or the
quantity of material from sample, elastic and damping
properties of component materials.

The sample width can influence the damping coefficient
by the fact that it determines the surface in which the air
friction is acting on the sample. The sample mass or
specific linear mass has an influence on the damping
coefficient so that, for the samples with higher mass and
width, the deformation energy which is stored in the sample
through the initial deformation, is dissipated in a larger
quantity of material. An influence may occur due to the
sample rigidity, explained by the fact that a force initially
applied on the sample produces a less deformation if the
rigidity is higher.

A good damping of vibrations is achieved in the case in
which the composite materials of the external layers have
the damping capacity and superior elastic properties. But
the influence of these layers is dependent on the
interaction with the middle layer and, for this reason, it is
difficult to be analytically analyzed.

In addition to these general considerations, we can
distinguish the following conclusions:

-both for damping coefficient per  mass unit  and as
well for the damping coefficient per unit length of the bar,
the highest values   were obtained for bars with core
thickness equal with 20 mm and the lowest values   were
obtained for bars with core thickness equal with 10 mm;
therefore, the damping coefficient increases at once with
the core thickness of bar;

-we have not noticed the significant differences of the
damping coefficient per mass unit  of the bar, for the bars
which have the width equal with 40 mm, and, respectively,
for those which have the width equal with  50 mm;
however, the bars which have the width equal with 50 mm
have the damping coefficient per unit length of the bar
higher than the bars with the width equal with 40 mm;

-both values of the damping coefficient, per unit mass
and per unit length of the bar, decrease proportional with
free length of the bar, having a dependence of exponential
type.
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